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Abstract - Monitoring dynamical processes requires the estimation of the entire state, which is only
partly accessible by measurements. Most quantities must be determined via model based state estima-
tion, which in general is an ill-posed inverse problem. Regularization techniques have to be applied.
In most of the literature the initial data are also regularized. However, the initial data are typically
unknown and only a rough guess is provided by experience or from the previous time window. Hence,
to avoid undesired bias we omit the regularization of the initial data. The purpose of this paper is to
analyse the effects of this problem formulation.

We shortly deduce the problem formulation of state estimation with incorporated model error func-
tions, discuss the ill-posedness and introduce the applied regularization. Then the first order necessary
conditions are presented and the optimization problem is reduced by several variables. Hence, e.g. one
otherwise necessary regularization parameter is dispensable.

To analyse in detail the influence of the regularization parameters and of the coefficients of the model,
we study, as a start, linear state equations as constraints. We show that the regularized inverse problem
is well-posed with respect to L2-perturbations. However, a large spectral radius of the system matrix can
lead to a large condition number and small disturbances in the measurements may propagate to large
errors in the initial data. Moreover the issue of observability comes into play, since also eigenvectors of
the system matrix which are close to the null space of the output election matrix can cause arbitrary large
norms. From the engineering side the perhaps more interesting case of disturbances in the supremum-
norm leads to bounds only dependent on the regularization parameters.

1. INTRODUCTION
State estimation is the task of determining from a few given, typically noisy measurements over a past
time horizon all state functions, which are involved e.g. into a chemical process. The measurements
correspond only to a few states. The others have to be estimated using the coupling of the states
via model equations. State estimation can be viewed in general as an ill-posed inverse problem. Then,
regularization techniques have to be applied. In most of the literature the initial data are also regularized
(see e.g.[1, 15, 16, 18]). In this case the resulting optimization formulation coincides widely with a
corresponding control problem, where the initial data are given. Control problems are analysed by
many authors and numerical methods are available. However, in state estimation the initial data are
typically unknown. Sometimes experiences provide a rough guess for the initial data, or state estimation
on one horizon provides guesses for a forwardly moved time horizon, which are then used as reference
values for regularization, though precise values are not available. Hence, to avoid bias we omit the
regularization of the initial data (for further discussion see [3]). The purpose of this paper is to analyse
this problem formulation.

We shortly deduce in Section 2 the problem formulation of state estimation with incorporated
model error functions, discuss the ill-posedness and introduce the applied regularization. In Section 3
we derive the first order optimality conditions for the resulting optimization problem. As a consequence
we can reduce the optimization problem by several variables and avoid the choice of one otherwise
necessary regularization parameter. Section 4 is concerned with the study of well-posedness of the
formulation, with the error propagation and the analysis of the resulting solution operator. As a start
we restricted these considerations to the linear case with time independent coefficient. Of particular
interest is here the influence of the regularization parameters and the influence of the model equations
with their observability and their model matrices.

2. DERIVATION OF THE PROBLEM FORMULATION
In [3] the mathematical formulation of the estimation problem is discussed and its engineering inter-

pretation is given in detail. In this paper we concentrate on the more mathematical approach, arguing
with the mathematical features of the variables and equations. We state the model equations and their
extension by model error functions and then discuss shortly the regularization of the problem.
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2.1. Model Equations
The quantities of interest in process monitoring can be summarized in the state functions x, the output
functions y, the control variables u and parameters p. For the particular case of state estimation the
controls u and the parameters p are known variables. Then, the mathematical description of the state
equations of the process is assumed to be given by the differential algebraic equations (DAE’s)

Gẋ− f(x,u,p) = 0 (1)

with a possibly time dependent matrix G, a given function f and the consistent initial condition [5]

x(t0) = x0. (2)

The output equations

y −Cx = 0 (3)

describe which states can be measured. Here C is a time independent matrix, typically an identity
matrix extended by zero columns. The number of output functions ny are typically far less than
the number of involved states nx. We require that the system is observable [6, 7, 10], i.e. the map
F : x0 7−→ y given by (1)– (3) is injective for any given u and p. Hence given an output y ∈ Im(F)
we can reconstruct uniquely x using (1) and (3).

To include possible model errors into the model equations the DAE’s are extended linearly by
unknown error functions w and v, which results into the equations

Gẋ− f(x,u,p)−Ww = 0 (4)
y −Cx− V v = 0. (5)

The matrices W and V are typically identity matrices enlarged by zero rows. They reflect which
equations are trusted. The above model eqns (4), (5) and (2) describe the process on a given interval
(time horizon on [t0, t0 + T ]) which is assumed to be projected onto [0, 1]. For convenience we omit the
interval [0, 1] in the following. Moreover, we only assume that the equations are fulfilled in the weak
sense, i.e.: let L2 be space of the square integrable functions and H1 the space of weakly differentiable
functions (Sobolev space), denote by 〈., .〉 the L2 scalar product 〈f, ν〉 =

∫ 1

0
f(t)ν(t) dt then an equation

f(t) = g(t) is weakly fulfilled if 〈f, ν〉 = 〈g, ν〉 for all ν ∈ L2, respectively H1 or its dual space (H1)′.
For simplicity if the dimension n = nx etc. is obvious in the context, we omit the exponent n and write
L2 and H1 instead of the precise notation (H1)n.

Inequality constraints reflect, for example, safety restrictions and control limits and can be written
as

c(x,u,p) ≤ 0. (6)

For state estimation they are typically of the form ci(x,u,p) = xi− c̄i and ci+nx(x,u,p) = −xi + c̄i+nx

for i = 1, . . . , nx.

2.2. The Inverse Problem and Regularization
Given x0,w and v the solution y is uniquely determined by (4) and (5). This defines an operator (in

case of G = I)

T

 x0

w
v

 := y with T : Rnx × (L2)
nw ×

(
H1

)nv −→
(
H1

)ny
. (7)

For state estimation one wants to determine x0,w and v and, hence, x from given data. If the
data are clean they shall coincide with y. However, in general only noisy measurements are avail-
able. Assuming that the measurements taken at discrete times can be processed to signal func-
tions z, these functions are typically not in H1 but in L2. Hence, the output functions y can-
not match the measurements z exactly. The estimation solution is given as a least squares solu-
tion, i.e. T †z :=

(
xT

0 ,wT ,vT
)T where ‖T

(
xT

0 ,wT ,vT
)T − z‖(L2)

ny is minimal. Taking into ac-
count that each output function can be weighted separately the optimization problem is formulated as

min
x0,w,v

1/2
∫ 1

0

(y − z)T Ry(y − z) dt with T
(
xT

0 ,wT ,vT
)

= y (8)

with some time independent, positive definite matrix Ry.
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The generalized inverse T † : (L2)
ny −→ Rnx × (L2)

nw ×
(
H1

)nv is an unbounded operator, since
highly oscillatory functions z ∈

(
H1

)ny with uniformly bounded L2- or L∞-norms can lead to un-
bounded L2-, respectively, L∞-norms of w due to the involved differential operator (for example
z(t) = ε sin(t/ε2)). Additionally the problem of non-uniqueness in w and v can occur.

One possible regularization technique to overcome the ill-posedness is Tikhonov-type regularization
[8, 13]. This leads to the following ansatz for the cost functional:

1/2
∫ 1

0

(y − z)T Ry(y − z) + vT Rvv + wT Rww dt (9)

with some time independent, positive definite matrices Rv, Rw. The resulting optimization problem for
state estimation on a fixed horizon projected onto [0, 1] is then given by minimizing (9) with the model
eqns (4), (5) and the initial condition (2) as equality constraints and the inequality constraints (6).
We would like to mention that typically the initial values x0 are regularized too (for e.g. [12, 16, 19])
with estimated reference values xref

0 . The additional regularization of the initial values origins from
the classical way of Tikhonov-regularization, which regularizes all unknowns. Moreover, in a receding
horizon estimator it is used to reflect the measurements of a past time horizon into the current horizon
[19], where then the regularization matrices can be adjusted according to linear filter theory. In the
context of nonlinear state estimation this is not reasonable any longer [16, 19]. In addition, for the first
time horizon appropriate reference values may be missing. In all cases precise values are not given. Bias
may occur as the simple one-dimensional linear example ẋ − αx = 0, y = x, z ≡ 0 with the solution
x(t) = x0 exp(αt) shows: while omitting regularization of x0 leads to x ≡ 0, which corresponds to z,
regularization of x0 with a reference value xref

0 6= 0 yields x0 = xref
0

2α
exp(2α)−1+2α and hence x 6≡ z.

Therefore, as mentioned in the beginning, we omit the regularization of the initial values on purpose to
avoid unnecessary bias.

3. REDUCTION OF THE PROBLEM FORMULATION
Since x0 is unknown we observe that the initial condition (2) has in case of an estimation problem no

information and need for the optimization problem. Hence, the eqn. (2) can be omitted in the problem
formulation. Moreover, we do not have to distinguish between u and p for analytical reasons, since
both are given. In the following we include p into u.

In the next step we exploit the relations to the Lagrange multipliers corresponding to the equality
constraints. Therefore, we consider in detail the first order necessary optimality conditions leading to
the Euler–Lagrange equations, which are obtained by the Pontryagin’s maximum principle [9, 11, 17].
Since no inequality constraints on y and v are present, we obtain —using the Lagrange multiplier with
respect to (5)— the equations

v = Rv
−1V T Ry(z − y). (10)

and
y =

(
I + V Rv

−1V T Ry

)−1

(Cx− z) + z. (11)

Let us define now Q :=
(
Ry

−1 + V Rv
−1V T

)−1

then the problem formulation (4)–(6), (9) is equivalent
to the following minimization.
Reduced optimization problem:

min 1/2
∫ 1

0

(Cx− z)T Q(Cx− z) + wT Rww dt (12)

s.t. Gẋ− f(x,u)−Ww = 0 (13)
c(x,u) ≤ 0. (14)

Considering the obtained optimization problem we can deduce:

Remark 1. The inclusion of v as a model error function into the problem formulation is not nec-
essary for the solution of the optimization problem. We can view Cx as in (3) as outputs and, after
obtaining the estimates, distinguish as in (5) which amount y of the outputs Cx is trustful and which
amount is considered as error v. Consequently, we can also avoid the problem of finding an appropriate
regularization matrix Rv.

B07
3



Exploiting the Lagrange multiplier λ with respect to (13) we obtain the relation

w = Rw
−1W T λ. (15)

Defining R := WRw
−1W T we can make the substitutions Ww = Rλ and wT Rww = λT Rλ and

eliminate the model error function w in the optimization process.
Necessary first order conditions: The remaining first order necessary optimality conditions for the
solution of the estimation problem are the equations

Gẋ− f(x,u)−Rλ = 0 (16)

− d

dt

(
GT λ

)
−

(
∂

∂x
f(x,u)

)T

λ + CT QCx +
(

∂

∂x
c(x,u)

)T

ν = CT Qz (17)(
GT λ

)
(0) = 0 and

(
GT λ

)
(1) = 0 (18)

νT c(x,u) = 0, c(x,u) ≤ 0, ν ≥ 0 (19)

with unknown Lagrange multipliers λ, ν and unknown states x.
The output function y is given by (11), the model error functions v by (10) and w by (15). Equations

(18) reflect the fact that no boundary conditions and no regularization of the boundary values of the
states x are given.

If no inequality constraints are present, (16)–(18) is a DAE system of order one, where for at most half
of the variables boundary conditions are given, while for the others the boundary values are unknown.
In case that the state equations are given by ODE’s only, we obtain with (15)

Remark 2. If G = I then the model error functions w are in H1 and vanish at the boundary t = 0
and t = 1. The boundary values are enforced by the described Tikhonov–regularization.

It is questionable whether one would like to have possible model errors also at the boundary. Reg-
ularization by discretization may offer this possibility. In case of regularization of the initial values of
the states x with some reference guesses x̄0, which is seen mostly in the literature, the model errors are
free at the boundary too. However, as mentioned, for wrong reference data undesired bias may appear
in the states.

3.1. Linear Case
To gain more insight in the properties of the chosen problem formulation and, in particular, to study

its well-posedness and its behaviour for noisy measurements we consider as a start in the next section
the case of linear ODE’s, i.e. Gẋ− f(x,u) = ẋ−Ax−u with time independent coefficients where we
additionally summarize all given parameters, controls and their perhaps nonlinear influence to a given
function u. Furthermore, let model error functions w be present in all state equations. This implies
that W , and consequently R are invertible. Moreover we drop the inequality constraints, which may
be for state estimation not of major interest. This case enhances already some of the main features we
face for state estimation if the initial data are not regularized in the problem formulation. Under this
assumption the problem formulation simplifies to the unconstraint minimization problem

minx∈H1

{
‖Q1/2 (Cx− z) ‖2

L2
+ ‖R−1/2 (ẋ−Ax− u) ‖2

L2

}
. (20)

As necessary first order conditions we obtain the second order differential equation

−R−1ẍ +
(
R−1A−AT R−1

)
ẋ +

(
AT R−1A + R−1Ȧ + CT QC

)
x

= CT Qz −R−1u̇−AT R−1u (21)

with the boundary conditions ẋ−Ax = u at t = 0 and t = 1.
While the strong formulation does not look symmetric, the weak formulation reflects the symmetry

given by the formulation (20).

〈ζ̇ −Aζ,R−1 (ẋ−Ax)〉+ 〈Cζ,QCx〉 = 〈Cζ,Qz〉+ 〈ζ̇ −Aζ,R−1u〉 for all ζ ∈ H1. (22)
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4. PROPERTIES OF THE INVOLVED OPERATORS
As motivated in Section 3.1 we consider as a start the linear case, with time independent coefficients

and without inequality constraints in more detail. We first consider a model with one state only. In this
case we can determine the solution explicitly and analyse its dependency on perturbation in the signal
z. For the numerical approach however, eqn. (22) or equivalent formulations are used. Hence, the
properties of the operator corresponding to (22) are analysed in more detail. In the second subsection
we then extend most ideas to systems with several states taking into account the issue of observability.

4.1. Linear Model with one State Function
With nx = 1, A = α, C = δ, W = 1, Rw = r and Q = q above differential equations reduce to

−rẍ +
(
rα2 + qδ2

)
x = qδz − ru̇− rαu (23)

s.t. ẋ(1)− αx(1) = u(1) and ẋ(0)− αx(0) = u(0).

The solution x and the model error function w are given with ζ :=
√

α2 + qδ2

r by:

x0 =
−1

sinh(ζ)

∫ 1

0

{
sinh(ζ − ζs)u(s) +

1
δ

[α sinh(ζ − ζs)− ζ cosh(ζ − ζs)] z(s)
}

ds (24)

x(t) =
1
ζ

(ζ cosh(ζt) + α sinh(ζt))x0 (25)

+
1
ζ

∫ t

0

{
(ζ cosh(ζ(t− s)) + α sinh (ζ(t− s)))u(s)− qδ

r
sinh (ζ(t− s)) z(s)

}
ds

w(t) =
qδ2

ζr
sinh(ζt)x0 (26)

+
qδ2

ζr

∫ t

0

{
sinh (ζ(t− s))u(s) +

1
δ

(α sinh (ζ(t− s))− ζ cosh(ζ(t− s))) z(s)
}

ds.

One typically has δ = 1 meaning the state x corresponds to the measurements z in the output eqn. (5).
The parameters influencing the solution are the regularization parameters r, q and the coefficient α of
the ODE.

Analysing the above functions (see [4]) we obtain

Theorem 1. Assuming a linear model with one state function and time independent coefficients and
omitting inequality constraints we obtain with above notation:

1. The regularized problem formulation (13)–(14) of state estimation, i.e. given z determining x0

and w, is well-posed.

2. Small perturbation of z in the L2–norm can lead to arbitrarily large error propagation in the initial
data x0 independently of r and q if α −→ −∞.

3. For perturbations of z in the L∞–norm we have bounds independently of α:

|xε
0| ≤

2
|δ|
‖zε‖L∞ and |wε(t)| ≤

2
√

q/r

1− e−2δ
√

q/r
‖zε‖L∞

where we used the abbreviation zε = z − z̃ etc. for the perturbation.

For the numerical approach not only the map z 7−→ (x0, w) is of interest but also the properties of the
discretization matrix corresponding to the eqn. (22), respectively to (23). Let us define the symmetric
bilinear form a : H1 ×H1 → R

a(ξ, x) = r〈ξ̇ − αξ, ẋ− αx〉+ qδ2〈ξ, x〉. (27)

Obviously, a is positive definite if r, qδ2 > 0. Given the operator S : H1 −→ (H1)′ defined as (ξ, Sx) :=
a(ξ, x), the equation (22) is equivalent to (ξ, Sx) = qδ〈ξ, z〉 + r〈ξ̇, u〉 − rα〈ξ, u〉. For any function
g ∈

(
H1

)′ we set u = 0 and z = 1/(qδ)g. Then x = S−1g is given by (24) and (25). Furthermore,
we obtain the following estimates for the norm of S and its inverse. Here we employ the H1–norm
‖x‖2

H1 = ‖x‖2
L2

+ ‖ẋ‖2
L2

.
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Theorem 2. The operator S is a linear isomorphism and we have:

min(4r, qδ2) ≤ ‖S‖H1→(H1)′ ≤ 2r max(1, α2) + qδ2, (28)

c(α)
qδ2 ≤ ‖S−1‖(H1)′→H1 ≤ max

{
2
r
,
2α2 + 1

qδ2

}
, (29)

with c(α) ≈ 0.38 · |α|3/2 for large |α|.
Hence cond(S) = ‖S‖H1→(H1)′‖S−1‖(H1)′→H1 is bounded but tends to infinity with |α| → ∞ for

fixed regularization parameters r and q.

Proof: The bilinear form a is continuous and coercive since

a(ξ, x) ≤ r‖ξ̇ − αξ‖L2‖ẋ− αx‖L2 + qδ2‖ξ‖L2‖x‖L2 ≤ C0‖ξ‖H1‖x‖H1

with C0 = 2r max(1, α2) + qδ2 and the parallelogram identity yields

c0‖x‖2
H1 = c0‖ẋ− αx + αx‖2

L2
+ c0‖x‖2

L2
≤ 2c0‖ẋ− αx‖2

L2
+ c0(2α2 + 1)‖x‖2

L2
≤ a(x, x)

with c0 = min
{

r
2 , qδ2

2α2+1

}
. Hence, due to the theorem of Lax Milgram the operator S : H1 −→ (H1)′

is a linear isomorphism and we have the upper bounds of (28) and (29).
For the lower bound in (28) we set x̃ = exp(−αt). Then

‖S‖H1→(H1)′ ≥ ‖Sx̃‖(H1)′/‖x̃‖H1 ≥ a(x̃, x̃)/‖x̃‖2
H1 =

= (4r‖ ˙̃x‖2
L2

+ qδ2‖x̃‖2
L2

)/‖x̃‖2
H1 ≥ min(4r, qδ2).

For the lower bound in (29) we consider the function x̃ = exp(αt). Obviously it holds Sx̃ = qδ2x̃

and hence ‖S−1‖(H1)′→H1 ≥ c(α)
qδ2 with c(α) := ‖x̃‖H1/‖x̃‖(H1)′ . Determining these norms (see [4]) we

conclude c(α) ≈ |α|3/2
√

e2−1
2(e2+1) for large |α|. q.e.d.

This indicates clearly that regularization with r is sufficient to obtain a bounded inverse S−1.
However, for large |α| the norm is still very large independently of r and q.

4.2. Linear Model with Several State Functions
In case of a linear model with constant coefficients with several state functions we define correspondingly
to (22) and (27) the symmetric bilinear form

a(ζ,x) = 〈ζ̇ −Aζ,R−1 (ẋ−Ax)〉+ 〈Cζ,QCx〉 (30)

and the operator S given by (ζ,Sx) := a(ζ,x). Taking into account the observability of the system we
can extend most ideas of the previous subsection to obtain bounds on the operator and then to conclude
well-posedness of the regularized problem formulation.

Theorem 3. For any z,u ∈ L2 the solution x of (22) determines the unique solution of the minimiza-
tion problem (20).

Proof: For the complete proof we refer to [4]. Here we illuminate only the importance of observability,
which provides positive definiteness of a: given a(x,x) = 0 then x is the solution of the system ẋ−Ax ≡
0, x(0) = x0 and (y ≡)Cx ≡ 0. Since the system is observable y ≡ 0 yields x0 = 0 and consequently
x ≡ 0. Hence, a(x,x) > 0 for x 6≡ 0. Then showing a(ζ,x) is continuous and coercive we can conclude
the assertion. q.e.d.

For the operator S and its inverse we obtain the following specific estimates depending on the model
matrices and the regularization matrices.

Theorem 4. The operator S : H1 →
(
H1

)′ is a linear isomorphism and has a bounded inverse.
Furthermore, we have

‖S‖H1→(H1)′ ≤ 2‖R‖−1 max(1, ‖A‖2) + ‖CT QC‖, (31)
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and

max{kS(v)|v eigenvector of A with ‖v‖l2 = 1} ≤ ‖S‖H1→(H1)′ , (32)

max{c(α)kS−1(v)|α, v with Av = αv with ‖v‖l2 = 1} ≤ ‖S−1‖(H1)′→H1 , (33)

with

kS(v) = min{4(v̄T R−1v), (v̄tCT QCv)} > 0, (34)
∞ > kS−1(v) = 1/‖CT QCv‖l2 > 1/‖CT QC‖ > 0 (35)

and c(α) given as in Theorem 2.
If the spectral radius ρ(A) is larger than 1, we can choose kS(v) = 2v̄T R−1v ≥ 2/‖R‖.

Proof: sketched only, details can be found in [4].
Since a(ζ,x) is continuous and coercive the Riesz representation theorem yields that S is an linear

isomorphism with an bounded inverse. For the lower bounds let α be an eigenvalue of A and v a
normalized corresponding eigenvector. Then, defining x̃ = exp(−αt)v, respectively x̃ = exp(αt)v we
can extend the ideas of Theorem 2 to obtain above estimates taking into account that the eigenvalues
and eigenvectors can have the complex values. However, for kS(v) > 0 and ∞ > kS−1(v) we need the
observability assumption: We consider the model equations ẋ−Ax = 0, x(0) = x0 and y = Cx, which
is required to be observable. Hence x0 7→ y is injective. Therefore defining x0 := v 6= 0 we follow
exp(αt)Cv = y 6≡ 0 and thus Cv 6= 0. Then v̄tCT QCv = ‖Q1/2Cv‖2 ≥ ‖Cv‖2/‖Q−1‖ > 0 and
kS(v) > 0. Since CT QCv 6= 0 we also have ∞ > kS−1(v). q.e.d.

While the boundedness of the inverse S−1 is known, a specified upper bound is missing. However,
in an analogous manner to the case of one state function we obtain:

Proposition 1. For an invertible matrix C the inverse operator S−1 is bounded by

‖S−1‖(H1)′→H1 ≤ max{2‖R‖, (2‖A‖2 + 1)‖Q−1‖‖C−1‖2}.

As a direct consequence of Theorem 4 we have:

Corollary 1. For any fixed regularization parameters R and Q, cond(S) ≥ c(α)kS(v)kS−1(v) can be
arbitrarily large,

1. if the spectral radius ρ(A) is large or

2. if there is an eigenvector v of the model matrix A which is close to the null space of C.

Due to the boundedness of the inverse and the compact imbedding H1 ↪→ C0 we have:

Corollary 2. The regularized problem formulation (9) with time independent, linear ODE’s as con-
straints and no inequality constraints is well-posed, i.e. max{|x0|, ‖w‖L2} ≤ c‖z‖L2 . Furthermore we
have ‖x‖C0 ≤ c‖z‖L2 ≤ c‖z‖L∞ with a generic constant c.

However, such strong assertions as they are given in Theorem 1 are currently not available.

Finally, we would like to bring to the readers attention the influence of a long time horizon. As
mentioned in the beginning state estimation uses measurements of a past time horizon [t0, t0 +T ], which
is then projected onto [0, 1]. Given a fixed model equation ẋ(t) −Ax(t) − u(t) = 0 for t ∈ [t0, t0 + T ]
the projection onto [0, 1] leads to ˙̃x(s)− TAx̃(s)− ũ(s) = 0 for s ∈ [0, 1]. Hence in the estimation for
cond(S) and for the error propagation into x0 (see Theorem 1) the spectral radius Tρ(A) is relevant.

Remark 3. While long horizons may be favourable for stability reasons concerning the confidence into
the obtained measurements, from the point of view of the resulting system and estimating the initial
data long horizons should be avoided, since they increase the condition number respectively the error
propagation.

Some first approaches for the choice of an appropriate length of the time horizon are known under
stochastical assumptions on the underlying measurement errors and for linear systems [14, 16, 18].
However, this is still a fairly open research problem, in particular if stochastical assumptions cannot be
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assured in the applications or nonlinearity occurs. The above remark ensures the importance of closing
this gap and illuminates an additional issue which should to be considered for the choice of the horizon
length.

5. CONCLUSIONS
The formulation of state estimation as an optimization problem including possible model error functions
but without regularization of the initial data offers solutions without bias.

It turnes out that the inclusion of model error functions into the output equations is not necessary
for the computation process. In this way the otherwise difficult task of choosing an appropriate regular-
ization parameter for these model error function can be avoided. Moreover, one can reduce the resulting
optimization problem without disadvantage to the unknown states and the model error functions in the
state equations.

For linear ODE’s with time independent coefficients and without inequality constraints it is shown
that the regularized problem formulation is well-posed. However we see already in one-dimensional
problems, that we can face large error propagation with respect to L2 disturbances depending only on
the model. For the, from the engineering side perhaps, more interesting case of L∞ disturbances we
have bounds independent of the model.

The evolving solution operators and their inverses are bounded. Nevertheless, a large spectral radius
of the system matrix can lead to a large condition numbers. In addition the issue of observability
comes into play, since also eigenvectors of the system matrix which are close to the null space of the
output election matrix can cause arbitrary large norms. These condition numbers influence for example
essentially the numerical solution process.

Finally, while long time horizons may be favourable for stability reasons concerning the confidence
into the obtained measurements, from the point of view of the resulting system and estimating the
initial data long horizons should be avoided, since they increase the condition number respectively the
error propagation.
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